Страница:
<< 1 2 [Всего задач: 9]
|
|
Сложность: 3+ Классы: 5,6,7
|
Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова ИНТЕГРИРОВАНИЕ, а Маша сделала то же самое со словом СУПЕРКОМПЬЮТЕР. У кого получилось больше слов?
|
|
Сложность: 4 Классы: 7,8,9
|
Существует ли выпуклый многоугольник,
у которого каждая сторона равна какой-нибудь диагонали, а каждая
диагональ– какой-нибудь стороне?
|
|
Сложность: 5- Классы: 9,10
|
На доске нарисован правильный многоугольник. Володя хочет отметить k точек на его периметре так, чтобы не существовало другого правильного многоугольника (не обязательно с тем же числом сторон), также содержащего отмеченные точки на своем периметре.
Найдите наименьшее k, достаточное для любого исходного многоугольника.
|
|
Сложность: 5- Классы: 9,10,11
|
По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.
Страница:
<< 1 2 [Всего задач: 9]