ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Гуровиц В.М.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 9]      



Задача 116971

Тема:   [ Задачи с ограничениями ]
Сложность: 3+
Классы: 5,6,7

Вася выписал все слова (не обязательно осмысленные), которые получаются вычеркиванием ровно двух букв из слова ИНТЕГРИРОВАНИЕ, а Маша сделала то же самое со словом СУПЕРКОМПЬЮТЕР. У кого получилось больше слов?

Прислать комментарий     Решение

Задача 110788

Темы:   [ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 7,8,9

Существует ли выпуклый многоугольник, у которого каждая сторона равна какой-нибудь диагонали, а каждая диагональ– какой-нибудь стороне?
Прислать комментарий     Решение


Задача 64741

Темы:   [ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Наименьший или наибольший угол ]
[ Инверсия помогает решить задачу ]
Сложность: 5-
Классы: 9,10

На доске нарисован правильный многоугольник. Володя хочет отметить k точек на его периметре так, чтобы не существовало другого правильного многоугольника (не обязательно с тем же числом сторон), также содержащего отмеченные точки на своем периметре.
Найдите наименьшее k, достаточное для любого исходного многоугольника.

Прислать комментарий     Решение

Задача 105119

Темы:   [ Теория алгоритмов (прочее) ]
[ Ориентированные графы ]
[ Обход графов ]
[ Процессы и операции ]
Сложность: 5-
Классы: 9,10,11

По кругу расставлено несколько коробочек. В каждой из них может лежать один или несколько шариков (или она может быть пустой). За один ход разрешается взять все шарики из любой коробочки и разложить их, двигаясь по часовой стрелке, начиная со следующей коробочки, кладя в каждую коробочку по одному шарику.
  а) Докажите, что если на каждом следующем ходе шарики берут из той коробочки, в которую попал последний шарик на предыдущем ходе, то в какой-то момент повторится начальное размещение шариков.
  б) Докажите, что за несколько ходов из любого начального размещения шариков по коробочкам можно получить любое другое.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .