Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 32]
Вписанная окружность ω треугольника ABC касается сторон BC, AC и AB в точках A0, B0 и C0 соответственно. Биссектрисы углов B и C пересекают серединный перпендикуляр к отрезку AA0 в точках Q и P соответственно. Докажите, что прямые PC0 и QB0 пересекаются на окружности ω.
|
|
Сложность: 4 Классы: 8,9,10
|
Вокруг треугольника ABC с острым углом C описана окружность. На дуге AB, не содержащей точку C, выбрана точка D. Точка D' симметрична точке D относительно прямой AB. Прямые AD' и BD' пересекают стороны BC и AC в точках E и F. Пусть точка C движется по своей дуге AB. Докажите, что центр описанной окружности треугольника CEF движется по прямой.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Четырехугольник $ABCD$ вписан в окружность. $BL$ и $CN$ – биссектрисы треугольников $ABD$ и $ACD$ соответственно. Окружности, описанные вокруг треугольников $ABL$ и $CDN$, пересекаются в точках $P$ и $Q$. Докажите, что прямая $PQ$ проходит через середину дуги $AD$, не содержащей точку $B$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике $ABC$ проведены высоты $BB_1$, $CC_1$ и диаметр $AD$ описанной окружности. Прямые $BB_1$ и $DC_1$ пересекаются в точке $E$, а прямые $CC_1$ и $DB_1$ – в точке $F$. Докажите, что $\angle CAE=\angle BAF$.
В треугольнике
ABC проведены биссектрисы
AD ,
BE
и
CF , пересекающиеся в точке
I . Серединный перпендикуляр к отрезку
AD пересекает прямые
BE и
CF в
точках
M и
N соответственно. Докажите, что точки
A ,
I ,
M
и
N лежат на одной окружности.
Страница:
<< 1 2 3 4 5
6 7 >> [Всего задач: 32]