Страница:
<< 1 2 3
4 5 >> [Всего задач: 21]
|
|
Сложность: 3 Классы: 7,8,9
|
Является ли число 49 + 610 + 320 простым?
|
|
Сложность: 3+ Классы: 7,8,9
|
В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы?
|
|
Сложность: 3+ Классы: 7,8,9
|
Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы и равны). Докажите, что три кузнечика не могут оказаться
а) на одной прямой, параллельной стороне квадрата;
б) на одной произвольной прямой.
|
|
Сложность: 3+ Классы: 7,8,9
|
В одной из школ 20 раз проводился кружок по астрономии. На каждом занятии присутствовало ровно пять школьников, причём никакие два школьника не встречались на кружке более одного раза. Докажите, что всего на кружке побывало не менее 20 школьников.
|
|
Сложность: 3+ Классы: 8,9,10
|
Ученик не заметил знака умножения между двумя семизначными числами и написал
одно четырнадцатизначное число, которое оказалось в три раза больше их
произведения. Найдите эти числа.
Страница:
<< 1 2 3
4 5 >> [Всего задач: 21]