Страница:
<< 1 2
3 >> [Всего задач: 14]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Из точки $A$ к окружности $\Omega$ проведены касательные $AB$ и $AC$. На отрезке $BC$ отмечена середина $M$ и произвольная точка $P$. Прямая $AP$ пересекает окружность $\Omega$ в точках $D$ и $E$. Докажите, что общие внешние касательные к окружностям $MDP$ и $MPE$ пересекаются на средней линии треугольника $ABC$.
|
|
Сложность: 3+ Классы: 8,9,10
|
В трапеции $ABCD$ основание $AD$ вдвое больше основания $BC$, а угол $C$ в полтора раза больше угла $A$. Диагональ $AC$ делит угол $C$ на два угла. Определите, какой из них больше?
|
|
Сложность: 3+ Классы: 8,9,10
|
Пусть $L$ – середина меньшей дуги $AC$ описанной окружности остроугольного треугольника $ABC$. Из вершины $B$ на касательную к описанной окружности, проведённую в точке $L$, опустили перпендикуляр $BP$. Докажите, что точки $P$, $L$ и середины сторон $AB$ и $BC$ лежат на одной окружности.
|
|
Сложность: 4- Классы: 9,10,11
|
На боковой стороне $BC$ равнобедренного треугольника $ABC$ выбрана точка $D$. Луч $AD$ пересекает прямую, проходящую через вершину $B$ и параллельную основанию $AC$, в точке $E$. Докажите, что касательная к описанной окружности треугольника $ABD$ в точке $B$ делит отрезок $EC$ пополам.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Четырёхугольник $ABCD$ вписан в окружность ω с центром в точке $O$. Описанная окружность Ω треугольника $AOC$ пересекает вторично прямые $AB, BC, CD$ и $DA$ в точках $M, N, K$ и $L$ соответственно. Докажите, что прямые $MN, KL$ и касательные, проведённые к ω в точках $A$ и $C$, касаются одной окружности.
Страница:
<< 1 2
3 >> [Всего задач: 14]