Группа туристов делит печенье. Если они разделят поровну две одинаковые пачки, останется одно лишнее печенье. А если разделят поровну три такие же пачки, останется 13 лишних печений. Сколько туристов в группе?
У аптекаря есть три гирьки, с помощью которых он одному покупателю отвесил 100 г йода, другому – 101 г мёда, а третьему – 102 г перекиси водорода. Гирьки он ставил всегда на одну чашу весов, а товар – на другую. Могло ли быть так, что каждая гирька легче 90 г?
Посреди пустого бассейна стоит квадратная платформа 50 × 50 сантиметров, расчерченная на клеточки 10× 10 см. На клетки платформы Лена ставит башенки из кубиков 10× 10× 10 см. Потом Таня включает воду.
Если высоты башенок были такие, как в таблице справа, то при уровне воды 5 см был 1 остров, при уровне воды 15 см было два острова (если острова «граничат по углу», то считаются отдельными островами), а при уровне воды 25 см все башенки оказались закрыты водой и стало 0 островов.
Придумайте, какие башенки из кубиков можно поставить, чтобы количество островов было следующим:
Уровень воды (см)
5
15
25
35
45
Количество островов
2
5
2
5
0
В ответе напишите в каждой клетке квадрата 5 на 5, сколько кубиков на ней стоит.
все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно?
Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.