ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 64888  (#11.1.1)

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 10,11

Решите систему:   .

Прислать комментарий     Решение

Задача 64889  (#11.1.2)

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 10,11

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

Прислать комментарий     Решение

Задача 64890  (#11.1.3)

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Существует ли такая цифра а, что  aaa(a–1) = (а – 1)а–2.

Прислать комментарий     Решение

Задача 64891  (#11.2.1)

Тема:   [ Функции. Непрерывность (прочее) ]
Сложность: 2+
Классы: 10,11

Числовая функция  f такова, что для любых x и y выполняется равенство  f(x + y) = f(x) + f(y) + 80xy.  Найдите  f(1), если  f(0,25) = 2.

Прислать комментарий     Решение

Задача 64892  (#11.2.2)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Точка Микеля ]
Сложность: 3+
Классы: 10,11

Четырёхугольник АВСD – вписанный. Лучи АВ и пересекаются в точке M, а лучи ВС и AD – в точке N. Известно, что  ВМ = DN.
Докажите, что  CM = CN.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .