Страница:
<< 1 2 [Всего задач: 8]
Задача
116760
(#9.6)
|
|
Сложность: 4- Классы: 9,10
|
Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что AB1 – AC1 = CA1 – CB1 = BC1 – BA1. Пусть IA, IB и IC – центры окружностей, вписанных в треугольники AB1C1, A1BC1 и A1B1C,
соответственно. Докажите, что центр описанной окружности треугольника
IAIBIC совпадает с центром вписанной окружности треугольника ABC.
Задача
116761
(#9.7)
|
|
Сложность: 4 Классы: 9,10
|
Изначально на доске записаны 10 последовательных натуральных чисел.
За одну операцию разрешается выбрать любые два числа на доске (обозначим их a и b) и заменить их на числа a² – 2011b² и ab. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?
Задача
116762
(#9.8)
|
|
Сложность: 4+ Классы: 9,10
|
В некотором городе сеть автобусных маршрутов устроена так, что каждые два маршрута имеют ровно одну общую остановку, и на каждом маршруте есть хотя бы 4 остановки. Докажите, что все остановки можно распределить между двумя компаниями так, что на каждом маршруте найдутся остановки обеих компаний.
Страница:
<< 1 2 [Всего задач: 8]