Страница: 1
2 >> [Всего задач: 8]
Задача
65376
(#10.1)
|
|
Сложность: 3+ Классы: 10,11
|
Пусть K – точка на стороне BC треугольника ABC, KN – биссектриса треугольника AKC. Прямые BN и AK пересекаются в точке F, а прямые CF и AB – в точке D. Докажите, что KD – биссектриса треугольника AKB.
Задача
65377
(#10.2)
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что всякий треугольник площади 1 можно накрыть равнобедренным треугольником площади менее .
Задача
65378
(#10.3)
|
|
Сложность: 4 Классы: 10,11
|
В треугольнике ABC точки A1, B1 и C1 – середины сторон BC, CA и AB соответственно. Точки B2 и C2 – середины отрезков BA1 и CA1 соответственно. Точка B3 симметрична C1 относительно B, а точка C3 симметрична B1 относительно C. Докажите, что одна из точек пересечения описанных окружностей треугольников BB2B3 и CC2C3 лежит на описанной окружности треугольника ABC.
Задача
65379
(#10.4)
|
|
Сложность: 5 Классы: 10,11
|
В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1, CC1 и отмечены точки A2, B2, C2, в которых вневписанные окружности касаются сторон BC, CA, AB соответственно. Прямая B1C1 касается вписанной окружности треугольника. Докажите, что точка A1 лежит на описанной окружности треугольника A2B2C2.
Задача
65380
(#10.5)
|
|
Сложность: 3+ Классы: 10,11
|
В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha,
Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что ∠MBK = 90°.
Страница: 1
2 >> [Всего задач: 8]