Страница:
<< 91 92 93 94
95 96 97 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 7,8,9
|
В таблицу 2006×2006 вписаны числа 1, 2, 3, ..., 2006².
Докажите, что найдутся такие два числа в клетках с общей стороной или вершиной, что их сумма кратна 4.
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны две бесконечные прогрессии: арифметическая a1, a2, a3, ... и геометрическая b1, b2, b3, ..., причём все числа, которые встречаются среди членов геометрической прогрессии, встречаются также и среди членов арифметической прогрессии. Докажите, что знаменатель геометрической прогрессии – целое число.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?
|
|
Сложность: 3+ Классы: 7,8,9
|
Пять отрезков провели (не отрывая карандаша от бумаги) так, что получилась пятиугольная звезда, разделённая проведёнными отрезками на пять треугольников и пятиугольник. Оказалось, что все пять треугольников равны. Обязательно ли пятиугольник правильный?
|
|
Сложность: 3+ Классы: 8,9,10
|
На доске написаны два 2007-значных числа. Известно, что из обоих чисел можно вычеркнуть по семь цифр так, чтобы получились одинаковые числа. Докажите, что в исходные числа можно вписать по семь цифр так, чтобы тоже получились одинаковые числа.
Страница:
<< 91 92 93 94
95 96 97 >> [Всего задач: 1703]