Страница:
<< 1 2 [Всего задач: 7]
Задача
66726
(#6)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Докажите, что
а) любое число вида 3k – 2, где k целое, есть сумма одного квадрата и двух кубов целых чисел;
б) любое целое число есть сумма одного квадрата и трёх кубов целых чисел.
Задача
66727
(#7)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В виртуальном компьютерном государстве не менее двух городов. Некоторые пары городов соединены дорогой, причём из каждого города можно добраться по дорогам до любого другого (переходить с дороги на дорогу разрешается только в городах). Если при этом можно, начав движение из какого-то города и не проходя дважды по одной и той же дороге, вернуться в этот город, государство называется сложным, иначе – простым. Петя и Вася играют в такую игру. В начале игры Петя указывает на каждой дороге направление, в котором по ней можно двигаться, и помещает в один из городов туриста. Далее за ход Петя перемещает туриста по дороге в разрешённом направлении в соседний город, а Вася в ответ меняет направление одной из дорог, входящей или выходящей из города, куда попал турист. Вася победит, если в какой-то момент Петя не сможет сделать ход. Докажите, что
а) в простом государстве Петя может играть так, чтобы не проиграть, как бы ни играл Вася;
б) в сложном государстве Вася может гарантировать себе победу, как бы ни играл Петя.
Страница:
<< 1 2 [Всего задач: 7]