ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 3]      



Задача 76514  (#1)

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3-
Классы: 8,9,10,11

Решить в целых числах уравнение  xy + 3x – 5y = – 3.

Прислать комментарий     Решение

Задача 76515  (#2)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

Некоторые из чисел a1, a2,...an равны +1, остальные равны -1. Доказать, что

2 sin$\displaystyle \left(\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots
+\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right.$a1 + $\displaystyle {\frac{a_1a_2}{2}}$ + $\displaystyle {\frac{a_1a_2a_3}{4}}$ + ... + $\displaystyle {\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}$$\displaystyle \left.\vphantom{ a_1+\frac{a_1a_2}{2}+\frac{a_1a_2a_3}{4}+\dots
+\frac{a_1a_2\cdot\ldots\cdot a_n}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi}{4}}$ =
         = a1$\displaystyle \sqrt{2+a_2\sqrt{2+a_3\sqrt{2+\dots +a_n\sqrt{2}}}}$.

В частности, при a1 = a2 = ... = an = 1, имеем:

2 sin$\displaystyle \left(\vphantom{ 1+\frac{1}{2}+\frac{1}{4}+\dots +\frac{1}{2^{n-1}}}\right.$1 + $\displaystyle {\textstyle\frac{1}{2}}$ + $\displaystyle {\textstyle\frac{1}{4}}$ + ... + $\displaystyle {\frac{1}{2^{n-1}}}$$\displaystyle \left.\vphantom{ 1+\frac{1}{2}+\frac{1}{4}+\dots +\frac{1}{2^{n-1}}}\right)$$\displaystyle {\frac{\pi}{4}}$ = 2 cos$\displaystyle {\frac{\pi}{2^{n+1}}}$ =
         = $\displaystyle \sqrt{2+\sqrt{2+\dots +\sqrt{2}}}$.

Прислать комментарий     Решение

Задача 76516  (#3)

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Окружность радиуса, равного высоте некоторого правильного треугольника, катится по стороне этого треугольника. Доказать, что дуга, высекаемая сторонами треугольника на окружности, всё время равна 60o.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .