Страница: 1 [Всего задач: 4]
Задача
78650
(#1)
|
|
Сложность: 3+ Классы: 8,9,10
|
Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.
Задача
78651
(#2)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой
вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.)
Задача
78652
(#3)
|
|
Сложность: 3+ Классы: 8,9
|
Доказать, что для любых трёх чисел, меньших 1000000, найдётся число, меньшее 100 (но большее 1), взаимно простое с каждым из них.
Задача
78653
(#4)
|
|
Сложность: 3 Классы: 8,9
|
Как соединить 50 городов наименьшим числом авиалиний так, чтобы из каждого
города можно было попасть в любой, сделав не более двух пересадок?
Страница: 1 [Всего задач: 4]