Страница:
<< 1 2 [Всего задач: 10]
Дан квадрат ABCD. На продолжении диагонали AC за точку C отмечена такая точка K, что BK = AC. Найдите угол BKC.
Разрежьте фигуру на двенадцать одинаковых частей.
Кощей Бессмертный взял в плен 43 человека и увёз их на остров. Отправился Иван-Царевич на двухместной лодке выручать их. А Кощей ему и говорит:
– Надоело мне этих дармоедов кормить, пусть плывут отсюда на твоей лодке подобру-поздорову. Имей в виду: с острова на берег доплыть можно только вдвоём, а обратно и один справится. Перед переправой я скажу каждому не менее чем про 40 других пленников, что это оборотни. Кому про кого скажу, сам выберешь. Если пленник про кого-то слышал, что тот оборотень, он с ним в лодку не сядет, а на берегу находиться сможет. Я заколдую их так, чтобы на суше они молчали, зато в лодке рассказывали друг другу про всех известных им оборотней. Пока хоть один пленник остаётся на острове, тебе с ними плавать нельзя. Лишь когда все 43 окажутся на том берегу, одному из них можно будет за тобой приплыть. А коли не сумеешь устроить им переправу – останешься у меня навсегда.
Есть ли у Ивана способ пройти испытание и вернуться с пленниками домой?
Можно ли так расставить цифры 1, 2, ..., 8 в клетках а) буквы Ш; б) полоски (см. рис.), чтобы при любом разрезании фигуры на две части сумма всех цифр в одной из частей делилась на сумму всех цифр в другой? (Резать можно только по границам клеток. В каждой клетке должна стоять одна цифра, каждую цифру можно использовать только один раз.)
Среди 49 школьников каждый знаком не менее чем с 25 другими.
Докажите, что можно их разбить на группы из двух или трёх человек так, чтобы каждый был знаком со всеми в своей группе.
Страница:
<< 1 2 [Всего задач: 10]