ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)

   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 381]      



Задача 103805

Темы:   [ Раскраски ]
[ Таблицы и турниры (прочее) ]
Сложность: 3
Классы: 7

Покрасьте клетки доски 5×5 в пять цветов так, чтобы в каждом горизонтальном ряду, в каждом вертикальном ряду и в каждом выделенном блоке встречались все цвета.

Прислать комментарий     Решение

Задача 103808

Темы:   [ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7

Найдите хотя бы две пары натуральных чисел, для которых верно равенство  2x³ = y4.

Прислать комментарий     Решение

Задача 103816

Темы:   [ Наглядная геометрия в пространстве ]
[ Развертка помогает решить задачу ]
[ Раскраски ]
Сложность: 3
Классы: 8,9

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)

Прислать комментарий     Решение


Задача 103817

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама – за 2, малыш – за 5, а бабушка – за 10 минут. У них есть один фонарик. Мост выдерживает только двоих. Как им перейти мост за 17 минут? (Если переходят двое, то они идут с меньшей из их скоростей. Двигаться по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя.)

Прислать комментарий     Решение

Задача 103819

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

В Мексике экологи добились принятия закона, по которому каждый автомобиль хотя бы один день в неделю не должен ездить (владелец сообщает полиции номер автомобиля и "выходной" день недели этого автомобиля). В некоторой семье все взрослые желают ездить ежедневно (каждый – по своим делам!). Сколько автомобилей (как минимум) должно быть в семье, если взрослых в ней
  а) 5 человек?  б) 8 человек?

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .