ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из горячего крана ванна заполняется за 23 минуты, из холодного – за 17 минут. Маша открыла сначала горячий кран. Через сколько минут она должна открыть холодный, чтобы к моменту наполнения ванны горячей воды налилось в 1,5 раза больше, чем холодной?

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 810]      



Задача 107618

Тема:   [ Задачи на работу ]
Сложность: 2+
Классы: 7,8,9

Из горячего крана ванна заполняется за 23 минуты, из холодного – за 17 минут. Маша открыла сначала горячий кран. Через сколько минут она должна открыть холодный, чтобы к моменту наполнения ванны горячей воды налилось в 1,5 раза больше, чем холодной?

Прислать комментарий     Решение

Задача 34859

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+

12 кандидатов в мэры рассказывали о себе. Через некоторое время один сказал: "До меня соврали один раз". Другой сказал: "А теперь -дважды". "А теперь - трижды" - сказал третий, и так далее до 12-го, который сказал: "А теперь соврали 12 раз". Тут ведущий прервал дискуссию. Оказалось, что по крайней мере один кандидат правильно посчитал, сколько раз соврали до него. Так сколько же раз всего соврали кандидаты?
Прислать комментарий     Решение


Задача 34863

Тема:   [ Симметричная стратегия ]
Сложность: 2+

Двое играют в следующую игру. Каждый игрок по очереди вычеркивает 9 чисел (по своему выбору) из последовательности 1,2,...,100,101. После одиннадцати таких вычеркиваний останутся 2 числа. Первому игроку присуждается столько очков, какова разница между этими оставшимися числами. Доказать, что первый игрок всегда сможет набрать по крайней мере 55 очков, как бы ни играл второй.
Прислать комментарий     Решение


Задача 34878

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 2+

Красный квадрат покрывают 100 белых квадратов. При этом все квадраты одинаковы и стороны каждого белого квадрата параллельны сторонам красного. Всегда ли можно удалить один из белых квадратов так, что оставшиеся белые квадраты все еще будут покрывать целиком красный квадрат?
Прислать комментарий     Решение


Задача 35023

Темы:   [ Построения (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Внутри угла расположена точка O. Как провести отрезок AB с концами на сторонах угла, проходящий через точку O, который делится точкой O пополам?
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .