ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.

   Решение

Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 381]      



Задача 109431

Темы:   [ Геометрия на клетчатой бумаге ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь многоугольника ]
Сложность: 3
Классы: 7,8,9

На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.
Прислать комментарий     Решение


Задача 111318

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 6,7,8

На складе лежало несколько целых головок сыра. Ночью пришли крысы и съели 10 головок, причём все ели поровну. У нескольких крыс от обжорства заболели животы. Остальные семь крыс следующей ночью доели оставшийся сыр, но каждая крыса смогла съесть вдвое меньше сыра, чем накануне. Сколько сыра было на складе первоначально?

Прислать комментарий     Решение

Задача 111323

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7

В кубке Водоканала по футболу участвовали команды "Помпа", "Фильтр", "Насос" и "Шлюз". Каждая команда сыграла с каждой из остальных по одному разу (за победу давалось 3 очка, за ничью – 1, за проигрыш – 0). Команда "Помпа" набрала больше всех очков, команда "Шлюз" – меньше всех. Могло ли оказаться так, что "Помпа" обогнала "Шлюз" всего на 2 очка?

Прислать комментарий     Решение

Задача 111899

Темы:   [ Геометрия на клетчатой бумаге ]
[ Наибольшая или наименьшая длина ]
Сложность: 3
Классы: 6,7,8

Петя и Вася живут в соседних домах (см. план на рисунке). Вася живет в четвёртом подъезде. Известно, что Пете, чтобы добежать до Васи кратчайшим путем (не обязательно идущим по сторонам клеток), безразлично, с какой стороны обегать свой дом. Определите, в каком подъезде живет Петя.

Прислать комментарий     Решение

Задача 115376

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7

В обменном пункте совершаются операции двух типов:
  1) дай 2 евро – получи 3 доллара и конфету в подарок;
  2) дай 5 долларов – получи 3 евро и конфету в подарок.
Когда богатенький Буратино пришел в обменник, у него были только доллары. Когда ушел – долларов стало поменьше, евро так и не появились, зато он получил 50 конфет. Во сколько долларов обошелся Буратино такой "подарок"?

Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .