ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисовано некоторое семейство S правильных треугольников, получающихся друг из друга параллельными переносами, причем любые два треугольника пересекаются. Докажите, что найдутся три точки такие, что любой треугольник семейства S содержит хотя бы одну из них.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109668  (#98.5.11.1)

Темы:   [ Теорема Виета ]
[ Графики и ГМТ на координатной плоскости ]
[ Кубические многочлены ]
Сложность: 4-
Классы: 9,10,11

Прямые, параллельные оси Ox, пересекают график функции  y = ax³ + bx² + cx + d:  первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF.

Прислать комментарий     Решение

Задача 109661  (#98.5.11.2)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Сонкин М.

Окружность, вписанная в треугольник ABC, касается сторон BC, CA, AB в точках A1, B1, C1 соответственно. Точки A2, B2, C2 – середины дуг BAC, CBA, ACB описанной окружности треугольника ABC. Докажите, что прямые A1A2, B1B2 и C1C2 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 109662  (#98.5.11.3)

Темы:   [ Свойства параллельного переноса ]
[ Метод ГМТ ]
[ Правильный (равносторонний) треугольник ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5-
Классы: 9,10,11

На плоскости нарисовано некоторое семейство S правильных треугольников, получающихся друг из друга параллельными переносами, причем любые два треугольника пересекаются. Докажите, что найдутся три точки такие, что любой треугольник семейства S содержит хотя бы одну из них.
Прислать комментарий     Решение


Задача 109663  (#98.5.11.4)

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Метод спуска ]
Сложность: 5
Классы: 9,10,11

В стране N  1998 городов, и из каждого осуществляются беспосадочные перелеты в три других города (все авиарейсы двусторонние). Известно, что из каждого города, сделав несколько пересадок, можно долететь до любого другого. Министерство Безопасности хочет объявить закрытыми 200 городов, никакие два из которых не соединены авиалинией. Докажите, что это можно сделать так, чтобы можно было долететь из каждого незакрытого города в любой другой, не делая пересадок в закрытых городах.

Прислать комментарий     Решение

Задача 109664  (#98.5.11.5)

Темы:   [ Исследование квадратного трехчлена ]
[ Графики и ГМТ на координатной плоскости ]
[ Касающиеся окружности ]
[ Исследование квадратного трехчлена ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 9,10,11

Внутри параболы  y = x²  расположены несовпадающие окружности ω1, ω2, ω3, ... так, что при каждом n > 1 окружность ωn касается ветвей параболы и внешним образом окружности ωn–1 (см. рис.). Найдите радиус окружности σ1998, если известно, что диаметр ω1 равен 1 и она касается параболы в её вершине.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .