ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана неравнобокая трапеция ABCD (AB || CD). Окружность, проходящая через точки A и B, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке. Решение |
Страница: << 1 2 3 >> [Всего задач: 12]
Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника AB, M – середина AB. Описанные окружности треугольников AMA1 и BMB1, пересекают прямые AC и BC в точках K и L соответственно. Докажите, что K, M и L лежат на одной прямой.
Один треугольник лежит внутри другого.
Докажите, что любой жесткий плоский треугольник T площади меньше 4 можно просунуть сквозь треугольную дырку Q площади 3.
AD и BE — высоты треугольника ABC. Оказалось, что точка C', симметричная вершине C относительно середины отрезка DE, лежит на стороне AB. Докажите, что AB – касательная к окружности, описанной около треугольника DEC'.
Дана неравнобокая трапеция ABCD (AB || CD). Окружность, проходящая через точки A и B, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.
Страница: << 1 2 3 >> [Всего задач: 12] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|