ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Классы:
|
|||||||||||||
Версия для печати
Убрать все задачи Пусть AA1, BB1 и CC1 – высоты неравнобедренного остроугольного треугольника ABC; описанные окружности треугольников ABC и A1B1C, вторично пересекаются в точке P, Z – точка пересечения касательных к описанной окружности треугольника ABC, проведённых в точках A и B. Докажите, что прямые AP, BC и ZC1 пересекаются в одной точке. Решение |
Страница: << 1 2 3 [Всего задач: 12]
B выпуклом четырёхугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC.
Пусть AA1, BB1 и CC1 – высоты неравнобедренного остроугольного треугольника ABC; описанные окружности треугольников ABC и A1B1C, вторично пересекаются в точке P, Z – точка пересечения касательных к описанной окружности треугольника ABC, проведённых в точках A и B. Докажите, что прямые AP, BC и ZC1 пересекаются в одной точке.
Страница: << 1 2 3 [Всего задач: 12] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|