Страница:
<< 1 2
3 >> [Всего задач: 15]
Задача
116884
(#11.2.2)
|
|
Сложность: 3 Классы: 10,11
|
Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что MK = KN.
Задача
116885
(#11.2.3)
|
|
Сложность: 3 Классы: 10,11
|
Дан правильный девятиугольник.
Сколькими способами можно выбрать три его вершины так, чтобы они являлись вершинами равнобедренного треугольника?
Задача
116886
(#11.3.1)
|
|
Сложность: 3 Классы: 10,11
|
Найдите наибольшее значение выражения x² + y², если |x – y| ≤ 2 и |3x + y| ≤ 6.
Задача
116887
(#11.3.2)
|
|
Сложность: 4- Классы: 10,11
|
В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.
Задача
116889
(#11.4.1)
|
|
Сложность: 3+ Классы: 10,11
|
Коэффициенты квадратного уравнения ax² + bx + c = 0 удовлетворяют условию 2a + 3b + 6c = 0.
Докажите, что это уравнение имеет корень на интервале (0, 1).
Страница:
<< 1 2
3 >> [Всего задач: 15]