ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ненулевые числа a и b таковы, что уравнение a(x – a)² + b(x – b)² = 0 имеет единственное решение. Докажите, что |a| = |b|. Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]
В окружность Ω вписан остроугольный треугольник ABC, в котором AB > BC. Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP.
На плоскости проведены n прямых, среди которых нет параллельных. Никакие три из них не пересекаются в одной точке. Докажите, что существует такая n-звенная несамопересекающаяся ломаная A0A1A2...An, что на каждой из n прямых лежит ровно по одному звену этой ломаной.
Внутри вписанного четырёхугольника ABCD отмечены такие точки P и Q, что ∠PDC + ∠PCB = ∠PAB + ∠PBC = ∠QCD + ∠QDA = ∠QBA + ∠QAD = 90°.
На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны.
Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Ненулевые числа a и b таковы, что уравнение a(x – a)² + b(x – b)² = 0 имеет единственное решение. Докажите, что |a| = |b|.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|