ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

P(x) и Q(x) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена P(x) в трёхчлен Q(x), равна сумме двух чисел, получаемых при подстановке корней трёхчлена Q(x) в трёхчлен P(x). Докажите, что дискриминанты трёхчленов P(x) и Q(x) равны.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 116948  (#11.2)

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

P(x) и Q(x) – приведённые квадратные трёхчлены, имеющие по два различных корня. Оказалось, что сумма двух чисел, получаемых при подстановке корней трёхчлена P(x) в трёхчлен Q(x), равна сумме двух чисел, получаемых при подстановке корней трёхчлена Q(x) в трёхчлен P(x). Докажите, что дискриминанты трёхчленов P(x) и Q(x) равны.

Прислать комментарий     Решение

Задача 116942  (#11.3)

Темы:   [ Теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества  A1, A2, A3, ...  так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась  k + 2013?

Прислать комментарий     Решение

Задача 64345  (#9.2)

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Две касательные, проведенные из одной точки ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 9,10

Остроугольный треугольник ABC вписан в окружность Ω. Касательные, проведённые к Ω в точках B и C, пересекаются в точке P. Точки D и E – основания перпендикуляров, опущенных из точки P на прямые AB и AC. Докажите, что точка пересечения высот треугольника ADE является серединой отрезка BC.

Прислать комментарий     Решение

Задача 64352  (#10.2)

Темы:   [ Подсчет двумя способами ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 9,10,11

На окружности отметили n точек, разбивающие её на n дуг. Окружность повернули вокруг центра на угол k/n (при некотором натуральном k), в результате чего отмеченные точки перешли в n новых точек, разбивающих окружность на n новых дуг.
Докажите, что найдётся новая дуга, которая целиком лежит в одной из старых дуг. (Считается, что концы дуги ей принадлежат.)

Прислать комментарий     Решение

Задача 64360  (#11.2)

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Элементы пирамиды (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Проектирование помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Автор: Шмаров В.

Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .