ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что в двудольном плоском графе  E ≥ 2F,  если  E ≥ 2  (E – число рёбер, F – число областей).

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 180]      



Задача 30759  (#38)

 [Формула Эйлера]
Темы:   [ Планарные графы. Формула Эйлера ]
[ Деревья ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9

Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера:  V – E + F = 2.

Прислать комментарий     Решение

Задача 30797  (#39)

Темы:   [ Планарные графы. Формула Эйлера ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Докажите, что для плоского графа справедливо неравенство  2E ≥ 3F.

Прислать комментарий     Решение

Задача 30800  (#40)

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 9

Докажите, что граф, имеющий пять вершин, каждая из которых соединена ребром со всеми остальными, не является плоским.

Прислать комментарий     Решение

Задача 30803  (#41)

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 4
Классы: 9

Докажите, что в плоском графе есть вершина, степень которой не превосходит 5.

Прислать комментарий     Решение

Задача 31110  (#42)

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 3+
Классы: 6,7,8

Доказать, что в двудольном плоском графе  E ≥ 2F,  если  E ≥ 2  (E – число рёбер, F – число областей).

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .