ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеется 101 пуговица одного из 11 цветов. Докажите, что либо среди этих пуговиц найдутся 11 пуговиц одного цвета, либо 11 пуговиц разных цветов.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 810]      



Задача 35393

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2+
Классы: 9

Найдите множество середин хорд, проходящих через заданную точку A внутри окружности.

Прислать комментарий     Решение

Задача 35431

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Теория игр (прочее) ]
Сложность: 2+
Классы: 7,8

На столе лежат две кучки камней: в первой кучке 10 камней, а во второй - 15. За ход разрешается разделить любую кучку на две меньшие. Проигрывает тот, кто не сможет делать ход. Может ли выиграть второй игрок?
Прислать комментарий     Решение


Задача 35434

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 6,7

Беседуют трое: Белокуров, Чернов и Рыжов. Брюнет сказал Белокурову: "Любопытно. Что один из нас русый, другой - брюнет, а третий - рыжий, но ни у кого цвет волос не соответствует фамилии". Какой цвет волос имеет каждый из беседующих?
Прислать комментарий     Решение


Задача 35453

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

Имеется 101 пуговица одного из 11 цветов. Докажите, что либо среди этих пуговиц найдутся 11 пуговиц одного цвета, либо 11 пуговиц разных цветов.
Прислать комментарий     Решение


Задача 35455

Темы:   [ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 7,8,9

Докажите, что число 100! не является полным квадратом.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .