ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Несколько шестиклассников и семиклассников обменялись рукопожатиями. При этом оказалось, что каждый шестиклассник пожал руку семи семиклассникам, а каждый семиклассник пожал руку шести шестиклассникам. Кого было больше - шестиклассников или семиклассников?

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 810]      



Задача 35570

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 7,8

Какое наибольшее число пятниц может быть в году?
Прислать комментарий     Решение


Задача 35578

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 2+
Классы: 8,9

Сколькими способами можно переставить числа от 1 до 100 так, чтобы соседние числа отличались не более, чем на 1?

Прислать комментарий     Решение

Задача 35587

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
Сложность: 2+
Классы: 7,8

Несколько шестиклассников и семиклассников обменялись рукопожатиями. При этом оказалось, что каждый шестиклассник пожал руку семи семиклассникам, а каждый семиклассник пожал руку шести шестиклассникам. Кого было больше - шестиклассников или семиклассников?

Прислать комментарий     Решение


Задача 35600

Темы:   [ Уравнения в целых числах ]
[ Шахматные доски и шахматные фигуры ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 7,8

Остап Бендер в интервью шахматному журналу о сеансе одновременной игры в Васюках сообщил, что в одной из партий у него осталось фигур в 3 раза меньше, чем у соперника, и в 6 раз меньше, чем свободных клеток на доске, а в другой партии фигур у него осталось в 5 раз меньше, чем у соперника, и в 10 раз меньше, чем свободных клеток на доске, и все-таки он сумел выиграть обе партии. Можно ли верить его рассказу?

Прислать комментарий     Решение

Задача 35614

Темы:   [ Уравнение плоскости ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 10,11

Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .