ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
![]() |
Страница: << 179 180 181 182 183 184 185 >> [Всего задач: 1255]
Точки a1, a2 и a3 расположены на единичной окружности zz = 1.
Докажите, что основания высот, середины сторон и середины отрезков от ортоцентра до вершин треугольника лежат на одной окружности.
Докажите, что точка m = 1/3 (a1 + a2 + a3) является точкой пересечения медиан треугольника a1a2a3.
Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
Пусть u – точка на единичной окружности z
Страница: << 179 180 181 182 183 184 185 >> [Всего задач: 1255] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |