ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите отношение сторон треугольника, одна из медиан которого делится вписанной окружностью на три равные части.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 82]      



Задача 57643  (#12.060)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 5+
Классы: 9

В остроугольном треугольнике ABC отрезки BO и CO, где O — центр описанной окружности, продолжены до пересечения в точках D и E со сторонами AC и AB. Оказалось, что  $ \angle$BDE = 50o и  $ \angle$CED = 30o. Найдите величины углов треугольника ABC.
Прислать комментарий     Решение


Задача 57644  (#12.061)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

Окружность S с центром O на основании BC равнобедренного треугольника ABC касается равных сторон AB и AC. На сторонах AB и AC взяты точки P и Q так, что отрезок PQ касается окружности S. Докажите, что тогда  4PB . CQ = BC2.
Прислать комментарий     Решение


Задача 57645  (#12.062)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

Пусть E — середина стороны AB квадрата ABCD, а точки F и G выбраны на сторонах BC и CD так, что AG| EF. Докажите, что отрезок FG касается окружности, вписанной в квадрат ABCD.
Прислать комментарий     Решение


Задача 57646  (#12.063)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

Хорда окружности удалена от центра на расстояние h. В каждый из сегментов, стягиваемых хордой, вписан квадрат так, что две соседние вершины квадрата лежат на дуге, а две другие — на хорде или ее продолжении (рис.). Чему равна разность длин сторон этих квадратов?


Прислать комментарий     Решение

Задача 57647  (#12.064)

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вневписанные окружности ]
Сложность: 5
Классы: 9,10,11

Найдите отношение сторон треугольника, одна из медиан которого делится вписанной окружностью на три равные части.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .