ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Центры окружностей с радиусами 1, 3 и 4 расположены на сторонах AD и BC прямоугольника ABCD. Эти окружности касаются друг друга и прямых AB и CD так, как показано на рис. Докажите, что существует окружность, касающаяся всех этих окружностей и прямой AB.


   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 82]      



Задача 57648  (#12.065)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 9

В окружность вписан квадрат, а в сегмент, отсеченный от круга из сторон этого квадрата, вписан другой квадрат. Найдите отношение длин сторон этих квадратов.
Прислать комментарий     Решение


Задача 57649  (#12.066)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 5
Классы: 9

На отрезке AB взята точка C и на отрезках AC, BC и AB как на диаметрах построены полуокружности, лежащие по одну сторону от прямой AB. Через точку C проведена прямая, перпендикулярная AB, и в образовавшиеся криволинейные треугольники ACD и BCD вписаны окружности S1 и S2 (рис.). Докажите, что радиусы этих окружностей равны.



Прислать комментарий     Решение

Задача 57650  (#12.067)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 5
Классы: 9

Центры окружностей с радиусами 1, 3 и 4 расположены на сторонах AD и BC прямоугольника ABCD. Эти окружности касаются друг друга и прямых AB и CD так, как показано на рис. Докажите, что существует окружность, касающаяся всех этих окружностей и прямой AB.


Прислать комментарий     Решение

Задача 57651  (#12.068)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 2
Классы: 9

Найдите все треугольники, у которых углы образуют арифметическую прогрессию, а стороны: а) арифметическую прогрессию; б) геометрическую прогрессию.
Прислать комментарий     Решение


Задача 55350  (#12.069)

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Теорема косинусов ]
[ Теорема Пифагора (прямая и обратная) ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 8,9

Найдите высоту трапеции, у которой основания равны a и b (a < b), угол между диагоналями равен 90o, а угол между продолжениями боковых сторон равен 45o.

Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .