ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что многочлен  P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1)  делится на  Q(x) = (x – 1)(x2 – 1)...(xm – 1).

   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 64412  (#06.105)

Тема:   [ Производная и кратные корни ]
Сложность: 4-
Классы: 10,11

Докажите, что многочлен  P(x) = a0 + a1x + ... + anxn  имеет число –1 корнем кратности  m + 1  тогда и только тогда, когда выполнены условия:
    a0a1 + a2a3 + ... + (–1)nan = 0,
    – a1 + 2a2 – 3a3 + ... + (–1)nnan = 0,
      ...
    – a1 + 2ma2 – 3ma3 + ... + (–1)nnman = 0.

Прислать комментарий     Решение

Задача 61029  (#06.106)

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что многочлен  P(x) = (xn+1 – 1)(xn+2 – 1)...(xn+m – 1)  делится на  Q(x) = (x – 1)(x2 – 1)...(xm – 1).

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .