ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что при нечётном  n > 1  справедливо равенство  

   Решение

Задачи

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 1255]      



Задача 61143  (#07.079)

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Треугольник Паскаля и бином Ньютона ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

Найдите все корни уравнения  (z – 1)n = (z + 1)n.
Чему равна сумма квадратов корней данного уравнения?

Прислать комментарий     Решение

Задача 61144  (#07.080)

Темы:   [ Алгебраические уравнения в C. Извлечение корня ]
[ Геометрия комплексной плоскости ]
[ Окружность Аполлония ]
Сложность: 4-
Классы: 10,11

Докажите, что все корни уравнения  a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой.

Прислать комментарий     Решение

Задача 61145  (#07.081)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Алгебраические уравнения в C. Извлечение корня ]
[ Теорема Виета ]
Сложность: 4+
Классы: 10,11

Докажите, что при нечётном  n > 1  справедливо равенство  

Прислать комментарий     Решение

Задача 61146  (#07.082)

 [Ряд обратных квадратов]
Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 5
Классы: 10,11

а) Докажите, что при нечётном  n > 1  справедливо равенство:   = θ   (0 < θ < 1).
б) Докажите тождество:   = .

Прислать комментарий     Решение

Задача 61147  (#07.083)

 [Положительные многочлены]
Темы:   [ Основная теорема алгебры и ее следствия ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4-
Классы: 10,11

Многочлен P(x) при всех действительных x принимает только положительные значения.
Докажите, что найдутся такие многочлены a(x) и b(x), для которых  P(x) = a²(x) + b²(x).

Прислать комментарий     Решение

Страница: << 169 170 171 172 173 174 175 >> [Всего задач: 1255]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .