ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Квадрат ABCD и равносторонний треугольник MKL расположены так, как это показано на рисунке. Найдите угол PQD.

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 65224

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9,10

В треугольнике ABC высота AH проходит через середину медианы BM.
Докажите, что в треугольнике BMC также одна из высот проходит через середину одной из медиан.

Прислать комментарий     Решение

Задача 65225

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9,10

Квадрат ABCD и равносторонний треугольник MKL расположены так, как это показано на рисунке. Найдите угол PQD.

Прислать комментарий     Решение

Задача 65226

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 3+
Классы: 8,9,10

В треугольнике ABC на сторонах AC, BC и AB отметили точки D, E и F соответственно, так, что  AD = AB,  EC = DC,  BF = BE.  После этого стёрли всё, кроме точек E, F и D. Восстановите треугольник ABC.

Прислать комментарий     Решение

Задача 65230

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Правильный (равносторонний) треугольник ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

У двух трапеций соответственно равны углы и диагонали. Верно ли, что такие трапеции равны?

Прислать комментарий     Решение

Задача 65231

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 10,11

Автор: Панов М.Ю.

Прямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .