ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB. Решение |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 819]
Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB.
В неравнобедренном прямоугольном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно. Докажите, что прямые AHc, CHa пересекаются на средней линии треугольника ABC.
Пусть K – точка на стороне BC треугольника ABC, KN – биссектриса треугольника AKC. Прямые BN и AK пересекаются в точке F, а прямые CF и AB – в точке D. Докажите, что KD – биссектриса треугольника AKB.
В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что ∠MBK = 90°.
Дана трапеция ABCD с основаниями AD и BC, в которой AB = BD. Пусть M – середина стороны DС. Докажите, что ∠MBC = ∠BCA.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 819] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|