ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что  ∠MBK = 90°.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 819]      



Задача 65369

Темы:   [ Пересекающиеся окружности ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Неравенство треугольника (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Автор: Мухин Д.Г.

Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что  2MN < AB.

Прислать комментарий     Решение

Задача 65372

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Ортоцентр и ортотреугольник ]
[ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

В неравнобедренном прямоугольном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно. Докажите, что прямые AHc, CHa пересекаются на средней линии треугольника ABC.

Прислать комментарий     Решение

Задача 65376

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 10,11

Пусть K – точка на стороне BC треугольника ABC, KN – биссектриса треугольника AKC. Прямые BN и AK пересекаются в точке F, а прямые CF и AB – в точке D. Докажите, что KD – биссектриса треугольника AKB.

Прислать комментарий     Решение

Задача 65380

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ортоцентр и ортотреугольник ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 10,11

В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha, Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что  ∠MBK = 90°.

Прислать комментарий     Решение

Задача 65789

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Перенос стороны, диагонали и т.п. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Автор: Тригуб А.

Дана трапеция ABCD с основаниями AD и BC, в которой  AB = BD.  Пусть M – середина стороны . Докажите, что  ∠MBC = ∠BCA.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 819]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .