ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В классе 28 учеников. На уроке программирования они делятся на три группы. На уроке английского языка они тоже делятся на три группы, но по-другому. И на уроке физкультуры они делятся на три группы каким-то третьим способом. Докажите, что найдутся хотя бы два ученика, которые на всех трёх занятиях находятся друг с другом в одной группе. Решение |
Страница: << 1 2 [Всего задач: 8]
В классе 28 учеников. На уроке программирования они делятся на три группы. На уроке английского языка они тоже делятся на три группы, но по-другому. И на уроке физкультуры они делятся на три группы каким-то третьим способом. Докажите, что найдутся хотя бы два ученика, которые на всех трёх занятиях находятся друг с другом в одной группе.
На доске в ряд в некотором порядке выписаны несколько степеней двойки. Для каждой пары соседних чисел Петя записал в тетрадку степень, в которую нужно возвести левое число, чтобы получилось правое. Первым в ряду на доске шло число 2, а последним – число 1024. Вася утверждает, что этого достаточно, чтобы найти произведение всех чисел в тетрадке. Прав ли Вася?
Существует ли треугольная пирамида, среди шести рёбер которой:
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|