ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник $ABCD$ вписан в окружность ω с центром в точке $O$. Описанная окружность Ω треугольника $AOC$ пересекает вторично прямые $AB, BC, CD$ и $DA$ в точках $M, N, K$ и $L$ соответственно. Докажите, что прямые $MN, KL$ и касательные, проведённые к ω в точках $A$ и $C$, касаются одной окружности.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 67067  (#1)

Темы:   [ Признаки делимости на 5 и 10 ]
[ Инварианты ]
Сложность: 3
Классы: 8,9,10,11

Натуральное число умножили на 5, результат снова умножили на 5 и так далее, всего сделали $k$ умножений. Оказалось, что в десятичной записи исходного числа и полученных $k$ чисел нет
цифры 7. Докажите, что существует натуральное число, которое можно $k$ раз умножить на 2, и снова ни в одном числе не будет цифры 7 в его десятичной записи.

Прислать комментарий     Решение

Задача 67068  (#2)

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9,10,11

На Поле Чудес выросло 8 золотых монет, но стало известно, что ровно три из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино три монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?
Прислать комментарий     Решение


Задача 67069  (#3)

Темы:   [ Последовательности (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10,11

Автор: Глебов А.

Пусть $n$ – натуральное число. Назовём последовательность $a_1, a_2, ..., a_n$ интересной, если для каждого  $i$ = 1, 2, ..., $n$  верно одно из равенств  $a_i = i$  или  $a_i = i$ + 1.  Назовём интересную последовательность чётной, если сумма её членов чётна, и нечётной – иначе. Для каждой нечётной интересной последовательности нашли произведение её чисел и записали его на первый листок. Для каждой чётной – сделали то же самое и записали на второй листок. На каком листке сумма чисел больше и на сколько? (Дайте ответ в зависимости от $n$.)

Прислать комментарий     Решение

Задача 67066  (#4)

Темы:   [ Замощения костями домино и плитками ]
[ Арифметика остатков (прочее) ]
[ Теория игр (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

Автор: Глебов А.

Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети?

Прислать комментарий     Решение

Задача 67071  (#5)

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

Четырёхугольник $ABCD$ вписан в окружность ω с центром в точке $O$. Описанная окружность Ω треугольника $AOC$ пересекает вторично прямые $AB, BC, CD$ и $DA$ в точках $M, N, K$ и $L$ соответственно. Докажите, что прямые $MN, KL$ и касательные, проведённые к ω в точках $A$ и $C$, касаются одной окружности.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .