ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Русских И.

На острове живут красные, синие и зелёные хамелеоны. 35 хамелеонов встали в круг. Через минуту все они одновременно поменяли цвет, каждый на цвет одного из своих соседей. Ещё через минуту снова все одновременно поменяли цвета на цвет одного из своих соседей. Могло ли оказаться, что каждый хамелеон побывал и красным, и синим, и зелёным?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 67281

Темы:   [ Объем параллелепипеда ]
[ Объем тела равен сумме объемов его частей ]
Сложность: 3+
Классы: 5,6,7,8

Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска?

Прислать комментарий     Решение

Задача 67287

Темы:   [ Равносоставленные фигуры ]
[ Разрезания (прочее) ]
Сложность: 4-
Классы: 6,7,8,9

Разрежьте первый параллелограмм на три части и сложите из них второй.

Прислать комментарий     Решение

Задача 67283

Темы:   [ Текстовые задачи (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 6,7,8

В школе все ученики — отличники, хорошисты либо троечники. В круг встали 99 учеников. У каждого среди трёх соседей слева есть хотя бы один троечник, среди пяти соседей справа — хотя бы один отличник, а среди четырёх соседей — двух слева и двух справа — хотя бы один хорошист. Может ли в этом круге быть поровну отличников и троечников?
Прислать комментарий     Решение


Задача 67286

Темы:   [ Доказательство от противного ]
[ Инварианты ]
Сложность: 4
Классы: 6,7,8

Автор: Русских И.

На острове живут красные, синие и зелёные хамелеоны. 35 хамелеонов встали в круг. Через минуту все они одновременно поменяли цвет, каждый на цвет одного из своих соседей. Ещё через минуту снова все одновременно поменяли цвета на цвет одного из своих соседей. Могло ли оказаться, что каждый хамелеон побывал и красным, и синим, и зелёным?
Прислать комментарий     Решение


Задача 67282

Темы:   [ Теория алгоритмов (прочее) ]
[ Шахматная раскраска ]
Сложность: 4+
Классы: 6,7,8

Решил шах проверить придворного мудреца. «Вот тебе шесть шкатулок, — сказал шах, — с надписями 1, 2, 3, 4, 5, 6 на крышках. В каждой шкатулке золотая монета, которая весит ровно столько граммов, сколько написано. Ты расставляешь шкатулки как угодно в клетках прямоугольника 2×3. Потом я втайне от тебя меняю местами монеты в каких-то двух шкатулках, стоящих в соседних по стороне клетках (или ничего не меняю). Затем ты укажешь на несколько шкатулок, а я назову тебе общий вес монет в них. Если после этого правильно определишь, какие монеты я переложил, останешься при дворе. А не сможешь — прогоню вон!»

Как может действовать мудрец, чтобы выдержать испытание?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .