ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

k проволочных треугольников расположены в пространстве так, что: 1) каждые 2 из них имеют ровно одну общую вершину, 2) в каждой вершине сходится одно и то же число p треугольников. Найдите все значения k и p, при которых указанное расположение возможно.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 76549  (#1)

Темы:   [ Равногранный тетраэдр ]
[ Проектирование помогает решить задачу ]
[ Ортогональная проекция (прочее) ]
Сложность: 6+
Классы: 10,11

В треугольной пирамиде все 4 грани имеют одинаковую площадь. Докажите, что они равны.
Прислать комментарий     Решение


Задача 76550  (#2)

Темы:   [ Наглядная геометрия в пространстве ]
[ Правильные многогранники ]
[ Перебор случаев ]
Сложность: 5+
Классы: 10,11

k проволочных треугольников расположены в пространстве так, что: 1) каждые 2 из них имеют ровно одну общую вершину, 2) в каждой вершине сходится одно и то же число p треугольников. Найдите все значения k и p, при которых указанное расположение возможно.
Прислать комментарий     Решение


Задача 76551  (#3)

Темы:   [ Четность и нечетность ]
[ Треугольник Паскаля и бином Ньютона ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

В числовом треугольнике

каждое число равно сумме чисел, расположенных в предыдущей строке над этим числом и над его соседями справа и слева (отсутствующие числа считаются равными нулю). Докажите, что в каждой строке, начиная с третьей, найдутся чётные числа.

Прислать комментарий     Решение

Задача 76552  (#4)

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип Дирихле (прочее) ]
Сложность: 4+
Классы: 8,9,10

Из двухсот чисел: 1, 2, 3, ..., 199, 200 выбрали одно число, меньшее 16, и ещё 99 чисел.
Докажите, что среди выбранных чисел найдeтся два таких, одно из которых делится на другое.

Прислать комментарий     Решение

Задача 76553  (#5)

Темы:   [ Выпуклые многоугольники ]
[ Пятиугольники ]
Сложность: 4+
Классы: 10,11

Внутри квадрата A1A2A3A4 лежит выпуклый четырёхугольник A5A6A7A8. Внутри A5A6A7A8 выбрана точка A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .