ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Можно ли разбить числа 1, 2, 3, ..., 33 на 11 групп, по три числа в каждой, так, чтобы в каждой группе одно из чисел равнялось сумме двух других?

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 78765  (#3)

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 8

При обычной игре в домино кости выкладываются так, чтобы разность между числами на соседних костях равнялась 0.
Можно ли выложить все 28 костей в замкнутую цепь так, чтобы все эти разности равнялись ±1?

Прислать комментарий     Решение

Задача 78766  (#4)

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8

Можно ли разбить числа 1, 2, 3, ..., 33 на 11 групп, по три числа в каждой, так, чтобы в каждой группе одно из чисел равнялось сумме двух других?

Прислать комментарий     Решение

Задача 78768  (#6)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4
Классы: 7,8,9

Известно, что в кадр фотоаппарата, расположенного в точке O, не могут попасть предметы A и B такие, что угол AOB больше 179o. На плоскости поставлено 1000 таких фотоаппаратов. Одновременно каждым фотоаппаратом делают по одному снимку. Доказать, что найдётся снимок, на котором сфотографировано не больше 998 фотоаппаратов.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .