ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На горе 1001 ступенька, на некоторых лежат камни, по одному на ступеньке. Сизиф берёт любой камень и переносит его на ближайшую сверху свободную ступеньку (то есть, если следующая ступенька свободна то на неё, а если занята, то на несколько ступенек вверх до первой свободной). После этого Аид скатывает на одну ступеньку вниз один из камней, у которых предыдущая ступенька свободна. Камней 500, и первоначально они лежали на нижних 500 ступеньках. Сизиф и Аид действуют по очереди, начинает Сизиф. Его цель – положить камень на верхнюю ступеньку. Может ли Аид ему помешать?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 97896

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанные и описанные окружности ]
[ Гомотетичные окружности ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 8,9

На стороне AB квадрата ABCD взята точка K, на стороне CD – точка L, на отрезке KL – точка M. Докажите, что вторая (отличная от M) точка пересечения окружностей, описанных около треугольников AKM и MLC, лежит на диагонали AC.

Прислать комментарий     Решение

Задача 97898

 [Сизифов труд]
Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 8,9,10,11

На горе 1001 ступенька, на некоторых лежат камни, по одному на ступеньке. Сизиф берёт любой камень и переносит его на ближайшую сверху свободную ступеньку (то есть, если следующая ступенька свободна то на неё, а если занята, то на несколько ступенек вверх до первой свободной). После этого Аид скатывает на одну ступеньку вниз один из камней, у которых предыдущая ступенька свободна. Камней 500, и первоначально они лежали на нижних 500 ступеньках. Сизиф и Аид действуют по очереди, начинает Сизиф. Его цель – положить камень на верхнюю ступеньку. Может ли Аид ему помешать?

Прислать комментарий     Решение

Задача 97905

Темы:   [ Геометрические интерпретации в алгебре ]
[ Квадратичные неравенства (несколько переменных) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Дана невозрастающая последовательность неотрицательных чисел  a1a2a3 ≥ ... ≥ a2k+1 ≥ 0.
Докажите неравенство:  

Прислать комментарий     Решение

Задача 115674

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4
Классы: 8,9

В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.

Прислать комментарий     Решение

Задача 115978

Темы:   [ Правило произведения ]
[ Шахматные доски и шахматные фигуры ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 4
Классы: 9,10,11

Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру А передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .