ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 7]      



Задача 97919  (#6)

Темы:   [ Числовые таблицы и их свойства ]
[ Правило произведения ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.

Прислать комментарий     Решение

Задача 97920  (#7)

Темы:   [ Степень вершины ]
[ Принцип крайнего (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 8,9,10,11

На окружности имеется 21 точка.
Докажите, что среди дуг, имеющих концами эти точки, найдётся не меньше ста таких, угловая мера которых не превышает 120°.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .