ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 810]      



Задача 78470

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 7,8

a, b, c – такие три числа, что  a + b + c = 0.  Доказать, что в этом случае справедливо соотношение  ab + ac + bc ≤ 0.

Прислать комментарий     Решение

Задача 79650

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
Сложность: 2+
Классы: 7,8

Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000.

Прислать комментарий     Решение

Задача 97934

Темы:   [ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство:  p(a) – p(b) = 1.
Докажите, что a и b различаются на 1.

Прислать комментарий     Решение

Задача 98302

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 6,7,8

Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них a человек считают, что будет лучше, b – что будет такой же, и c – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных:  m = a + b/2  и  n = a – c.  Оказалось, что  m = 40.  Найдите n.

Прислать комментарий     Решение

Задача 98377

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Формула включения-исключения ]
Сложность: 2+
Классы: 6,7,8

Аня, Боря и Вася составляли слова из заданных букв. Все составили разное число слов: больше всех – Аня, меньше всех – Вася. Затем ребята просуммировали очки за свои слова. Если слово есть у двух игроков, за него даётся 1 очко, у одного игрока – 2 очка, слова, общие у всех трёх игроков, вычёркиваются. Могло ли так случиться, что больше всех очков набрал Вася, а меньше всех – Аня?

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 810]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .