ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 98581  (#1)

Темы:   [ Математическая логика (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

Саша и Маша загадали по натуральному числу и сообщили их Васе. Вася написал на одном листе бумаги сумму загаданных чисел, а на другом – их произведение, после чего один из листов спрятал, а другой (на нём оказалось написано число 2002) показал Саше и Маше. Увидев это число, Саша сказал, что не знает, какое число загадала Маша. Услышав это, Маша сказала, что не знает, какое число загадал Саша. Какое число загадала Маша?

Прислать комментарий     Решение

Задача 98582  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шень А.Х.

а) В классе была дана контрольная. Известно, что по крайней мере ⅔ задач этой контрольной оказались трудными: каждую такую задачу не решили по крайней мере ⅔ школьников. Известно также, что по крайней мере ⅔ школьников класса написали контрольную хорошо: каждый такой школьник решил по крайней мере ⅔ задач контрольной. Могло ли такое быть?

Изменится ли ответ, если везде в условии заменить ⅔ на   б) ¾;   в) 7/10?

Прислать комментарий     Решение

Задача 98587  (#3)

Темы:   [ Плоскость, разрезанная прямыми ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 10,11

Несколько прямых, никакие две из которых не параллельны, разрезают плоскость на части. Внутри одной из этих частей отметили точку A.
Докажите, что точка, лежащая с A по разные стороны от всех данных прямых, существует тогда и только тогда, когда часть, содержащая A, неограничена.

Прислать комментарий     Решение

Задача 98588  (#4)

Темы:   [ Тригонометрические неравенства ]
[ Классические неравенства (прочее) ]
[ Монотонность, ограниченность ]
Сложность: 3+
Классы: 10,11

Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

Прислать комментарий     Решение

Задача 98589  (#5)

Темы:   [ Последовательности (прочее) ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

В бесконечной последовательности натуральных чисел каждое следующее число получается прибавлением к предыдущему одной из его ненулевых цифр.
Докажите, что в этой последовательности найдётся чётное число.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .