ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 57796  (#14.039)

Тема:   [ Трилинейные координаты ]
Сложность: 7
Классы: 9,10

Продолжения сторон выпуклого четырехугольника ABCD пересекаются в точках P и Q. Докажите, что точки пересечения биссектрис внешних углов при вершинах A и C, B и D, P и Q лежат на одной прямой.
Прислать комментарий     Решение


Задача 57797  (#14.040)

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

На сторонах AD и DC выпуклого четырехугольника ABCD взяты точки P и Q так, что $ \angle$ABP = $ \angle$CBQ. Отрезки AQ и CP пересекаются в точке E. Докажите, что $ \angle$ABE = $ \angle$CBD.
Прислать комментарий     Решение


Задача 57798  (#14.041)

Тема:   [ Трилинейные координаты ]
Сложность: 5
Классы: 9,10

Найдите трилинейные координаты точек Брокара.
Прислать комментарий     Решение


Задача 57799  (#14.044B)

Тема:   [ Трилинейные координаты ]
Сложность: 6+
Классы: 9,10

На сторонах треугольника ABC внешним (внутренним) образом построены правильные треугольники ABC1, AB1C и A1BC. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке. Найдите трилинейные координаты этой точки.
Прислать комментарий     Решение


Задача 57800  (#14.042)

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Найдите уравнения в трилинейных координатах для: а) описанной окружности; б) вписанной окружности; в) вневписанной окружности.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .