Страница:
<< 105 106 107 108
109 110 111 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 10,11
|
Назовём расположенный в пространстве треугольник $ABC$ удобным, если для любой точки $P$ вне его плоскости из отрезков $PA, PB$ и $PC$ можно сложить треугольник. Какие углы может иметь удобный треугольник?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Докажите, что из любого выпуклого четырёхугольника можно вырезать три его копии вдвое меньшего размера.
|
|
Сложность: 3+ Классы: 8,9,10
|
На Поле Чудес выросло 11 золотых монет, но стало известно, что ровно четыре из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино четыре монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?
|
|
Сложность: 3+ Классы: 8,9,10
|
На диагонали $AC$ квадрата $ABCD$ взята точка $P$. Пусть $H$ – точка пересечения высот треугольника $APD$, $M$ – середина $AD$ и $N$ – середина $CD$.
Докажите, что прямые $PN$ и $MH$ взаимно перпендикулярны.
|
|
Сложность: 3+ Классы: 9,10,11
|
В прямоугольной системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график функции $y = f(x)$. Затем ось ординат и все отметки на оси абсцисс стёрли. Предложите способ, как с помощью карандаша, циркуля и линейки восстановить ось ординат, если
а) $f(x) = 3^x$;
б) $f(x)$ = logax, где $a$ > 1 – неизвестное число.
Страница:
<< 105 106 107 108
109 110 111 >> [Всего задач: 1703]