ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1703]      



Задача 97787

Тема:   [ Связность и разложение на связные компоненты ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Несколько фишек двух цветов расположены в ряд (встречаются оба цвета). Известно, что фишки, между которыми 10 или 15 фишек, одинаковы.
Какое наибольшее число фишек может быть?

Прислать комментарий     Решение

Задача 97791

Темы:   [ Остовы многогранных фигур ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Существует ли многогранник (не обязательно выпуклый), полных список рёбер которого имеет вид: AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH (на рисунке приведена схема соединения рёбер)?

Прислать комментарий     Решение

Задача 97800

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Натуральные числа M и K отличаются перестановкой цифр.
Доказать, что
  а) сумма цифр числа 2M равна сумме цифр числа 2K;
  б) сумма цифр числа M/2  равна сумме цифр числа K/2  (если M и K чётны);
  в) сумма цифр числа 5M равна сумме цифр числа 5K.

Прислать комментарий     Решение

Задача 97815

Темы:   [ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9

Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от 1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их сумма равна 987654321.
  а) Доказать, что найдутся хотя бы две кондиционные пары   ((a, b)  и  (b, a)  – одна и та же пара).
  б) Доказать, что кондиционных пар – нечётное число.

Прислать комментарий     Решение

Задача 97822

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Через P(x) обозначается произведение всех цифр натурального числа x, через S(x) – сумма цифр числа x.
Сколько решений имеет уравнение:   P(P(x)) + P(S(x)) + S(P(x)) + S(S(x)) = 1984 ?

Прислать комментарий     Решение

Страница: << 106 107 108 109 110 111 112 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .