Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 1703]
Несколько фишек двух цветов расположены в ряд (встречаются оба цвета). Известно, что фишки, между которыми 10 или 15 фишек, одинаковы.
Какое наибольшее число фишек может быть?
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли многогранник (не обязательно выпуклый), полных список рёбер
которого имеет вид: AB, AC, BC, BD, CD, DE, EF, EG, FG, FH, GH, AH
(на рисунке приведена схема соединения рёбер)?
Натуральные числа M и K отличаются перестановкой цифр.
Доказать, что
а) сумма цифр числа 2M равна сумме цифр числа 2K;
б) сумма цифр числа M/2 равна сумме цифр числа K/2 (если M и K чётны);
в) сумма цифр числа 5M равна сумме цифр числа 5K.
Рассматриваются девятизначные числа, состоящие из неповторяющихся цифр от
1 до 9 в разном порядке. Пара таких чисел называется кондиционной, если их
сумма равна 987654321.
а) Доказать, что найдутся хотя бы две кондиционные пары  ((a, b)  и  (b, a)  – одна и та же пара).
б) Доказать, что кондиционных пар – нечётное число.
|
|
Сложность: 3+ Классы: 8,9,10
|
Через P(x) обозначается произведение всех цифр натурального числа x, через S(x) – сумма цифр числа x.
Сколько решений имеет уравнение:
P(P(x)) + P(S(x)) + S(P(x)) + S(S(x)) = 1984 ?
Страница:
<< 106 107 108 109
110 111 112 >> [Всего задач: 1703]