Страница:
<< 107 108 109 110
111 112 113 >> [Всего задач: 1703]
На уроке танцев 15 мальчиков и 15 девочек построили двумя параллельными
колоннами, так что образовалось 15 пар. В каждой паре измерили разницу роста
мальчика и девочки (разница берётся по абсолютной величине, то есть из большего
вычитают меньшее). Максимальная разность оказалась 10 см. В другой раз перед
образованием пар каждую колонну предварительно построили по росту. Докажите, что максимальная разность будет не больше 10 см.
|
|
Сложность: 3+ Классы: 7,8,9
|
Рассматриваются 4(N – 1) граничных клеток таблицы размером N×N. Нужно вписать в эти клетки последовательные 4(N – 1) целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:
а) N = 3;
б) N = 4;
в) N = 5.
|
|
Сложность: 3+ Классы: 7,8,9
|
Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков
2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.
|
|
Сложность: 3+ Классы: 7,8,9
|
На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте
часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее
число концертов каждый из шести музыкантов сможет послушать (из зала) всех
остальных?
|
|
Сложность: 3+ Классы: 9,10,11
|
а) Привести пример такого положительного a, что {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?
Страница:
<< 107 108 109 110
111 112 113 >> [Всего задач: 1703]