ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Турниры:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1703]      



Задача 97825

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

На уроке танцев 15 мальчиков и 15 девочек построили двумя параллельными колоннами, так что образовалось 15 пар. В каждой паре измерили разницу роста мальчика и девочки (разница берётся по абсолютной величине, то есть из большего вычитают меньшее). Максимальная разность оказалась 10 см. В другой раз перед образованием пар каждую колонну предварительно построили по росту. Докажите, что максимальная разность будет не больше 10 см.

Прислать комментарий     Решение

Задача 97826

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Рассматриваются  4(N – 1)  граничных клеток таблицы размером N×N. Нужно вписать в эти клетки последовательные  4(N – 1)  целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:
  а)  N = 3;
  б)  N = 4;
  в)  N = 5.

Прислать комментарий     Решение

Задача 97831

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Разные задачи на разрезания ]
Сложность: 3+
Классы: 7,8,9

Автор: Фомин С.В.

Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков 2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.

Прислать комментарий     Решение

Задача 97857

Темы:   [ Турниры и турнирные таблицы ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее число концертов каждый из шести музыкантов сможет послушать (из зала) всех остальных?

Прислать комментарий     Решение

Задача 97865

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Автор: Варге И.

а) Привести пример такого положительного a, что  {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?

Прислать комментарий     Решение

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 1703]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .