Страница:
<< 108 109 110 111
112 113 114 >> [Всего задач: 1703]
|
|
Сложность: 3+ Классы: 9,10
|
Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг
радиуса R?
|
|
Сложность: 3+ Классы: 10,11
|
В треугольнике ABC проведены высота AH и биссектриса BE. Известно, что угол BEA равен 45°. Докажите, что угол EHC равен 45°.
|
|
Сложность: 3+ Классы: 8,9,10
|
Берутся всевозможные непустые подмножества из множества чисел
1, 2, 3, ..., n. Для каждого подмножества берётся величина, обратная к произведению всех его чисел. Найти сумму всех таких обратных величин.
Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?
|
|
Сложность: 3+ Классы: 9,10,11
|
Имеется много кубиков одинакового размера, раскрашенных в шесть цветов. При
этом каждый кубик раскрашен во все шесть цветов, каждая грань – в какой-нибудь один свой цвет, но расположение цветов на разных кубиках может быть различным. Кубики выложены на стол, так что получился прямоугольник. Разрешается взять любой столбец этого прямоугольника, повернуть его вокруг длинной оси и положить на место. То же самое разрешается делать и со строками. Всегда ли можно с
помощью таких операций добиться того, что все кубики будут смотреть вверх
гранями одного и того же цвета?
Страница:
<< 108 109 110 111
112 113 114 >> [Всего задач: 1703]