Страница:
<< 1 2 3
4 >> [Всего задач: 18]
На каждой из ста карточек записано по одному числу, отличному от нуля, так, что каждое число равно квадрату суммы всех остальных.
Какие это числа?
Кабинки горнолыжного подъёмника занумерованы подряд числами от 1 до 99. Игорь сел в кабинку №42 подъёмника у подножия горы и в какой-то момент заметил, что он поравнялся с движущейся вниз кабинкой №13 (см. рисунок), а через 15 секунд его кабинка поравнялась с кабинкой №12.
Через какое время Игорь прибудет на вершину горы?
Придя в школу, Коля и Алиса обнаружили на доске надпись: "ГОРОДСКАЯ УСТНАЯ ОЛИМПИАДА". Они договорились сыграть в следующую игру: за один ход в этой надписи разрешается стереть произвольное количество одинаковых букв, а выигрывает тот, кто стирает последнюю букву. Первым ходил Коля и стёр последнюю букву "А". Как надо играть Алисе, чтобы обеспечить себе выигрыш?
Есть 16 кубиков, каждая грань которых покрашена в белый, чёрный или красный цвет (различные кубики могут быть покрашены по-разному). Посмотрев на их раскраску, барон Мюнхгаузен сказал, что может так поставить их на стол, что будет виден только белый цвет, может поставить так, что будет виден только чёрный, а может и так, что будет виден только красный. Могут ли его слова быть правдой?
Незнайка хочет записать по кругу 2015 натуральных чисел так, чтобы для каждых двух соседних чисел частное от деления большего на меньшее было простым числом. Знайка утверждает, что это невозможно. Прав ли Знайка?
Страница:
<< 1 2 3
4 >> [Всего задач: 18]