Страница:
<< 1 2 3 4 [Всего задач: 18]
Среди 25 жирафов, каждые два из которых различного роста, проводится конкурс "Кто выше?". За один раз на сцену выходят пять жирафов, а жюри справедливо (согласно росту) присуждает им места с первого по пятое. Каким образом надо организовать выходы жирафов, чтобы после семи выходов определить первого, второго и третьего призёров конкурса?
У Пети есть 12 одинаковых разноцветных вагончиков (некоторые, возможно, одного цвета, но неизвестно, сколько вагончиков какого цвета). Петя считает, что различных 12-вагонных поездов он сможет составить больше, чем 11-вагонных. Не ошибается ли Петя? (Поезда считаются одинаковыми, если в них на одних и
тех же местах находятся вагончики одного и того же цвета.)
Есть 13 золотых и 14 серебряных монет, из которых ровно одна фальшивая. Известно, что если фальшивая монета – золотая, то она легче настоящей, так как сделана из меньшего количества золота, а если фальшивая монета – серебряная, то она тяжелее настоящей, так как сделана из более дешевого
и тяжелого металла. Как найти фальшивую монету за три взвешивания на чашечных весах без гирь? (Настоящие золотые монеты весят одинаково и настоящие серебряные монеты весят одинаково.)
Страница:
<< 1 2 3 4 [Всего задач: 18]