ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 12]      



Задача 65234

Темы:   [ Сферы (прочее) ]
[ Пересекающиеся окружности ]
[ Перпендикулярные плоскости ]
[ Окружности на сфере ]
Сложность: 4+
Классы: 10,11

В пространстве дан треугольник ABC и сферы S1 и S2, каждая из которых проходит через точки A, B и C. Для точек M сферы S1, не лежащих в плоскости треугольника ABC, проводятся прямые MA, MB и MC, пересекающие сферу S2 вторично в точках A1, B1 и C1 соответственно. Докажите, что плоскости, проходящие через точки A1, B1 и C1, касаются фиксированной сферы либо проходят через фиксированную точку.

Прислать комментарий     Решение

Задача 65235

Темы:   [ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Точка Микеля ]
Сложность: 5-
Классы: 10,11

В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .